Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Ethenylbenzene with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane

Tejraj M. Aminabhavi* and Virupaxagouda B. Patil

Department of Chemistry, Karnatak University, Dharwad 580 003, India

Experimental densities, refractive indices, and viscosities at 298.15, 303.15, and 308.15 K and speeds of sound values at 298.15 K are presented for the binary mixtures of ethenylbenzene with hexane, heptane, octane, nonane, decane, and dodecane over the entire compositions. From these data, excess molar volumes, deviations in refractive index, speed of sound, and viscosity have been computed. These parameters have been fitted to the Redlich–Kister equation using a multiparametric nonlinear regression analysis. Estimated coefficients and standard error values for the mixing quantities are presented for each of the binary mixtures. Experimental and computed results are discussed in terms of molecular interactions.

Introduction

Ethenylbenzene (styrene) is a monomer in the preparation of an important engineering polymer, namely, polystyrene. In many processing operations, polystyrene comes in contact with organic liquids including alkanes. A literature search indicated the availability of only a few thermodynamic properties on the binary mixtures of ethenylbenzene with nitriles (Haijun et al., 1994a,b, 1995a), N,Ndimethylacetamide (Haijun et al., 1995b), N,N-dimethylformamide (Haijun et al., 1995c), and nitrobenzene (Miller et al., 1975). To our best knowledge, mixtures of ethenylbenzene with alkanes have not been studied. In view of this, we have undertaken the study of the thermodynamic, hydrodynamic, ultrasonic, and optical properties of ethenylbenzene with linear alkanes in order to understand their mixing nature. Such a study would be helpful in polymer engineering and other processing technologies.

This paper presents the physical property data on density, ρ , refractive index, n_D , for the sodium-D line, and viscosity, η , in the binary mixtures of ethenylbenzene with hexane, heptane, octane, nonane, decane, and dodecane at 298.15, 303.15, and 308.15 K, while the speeds of sound, u, are presented only at 298.15 K. From these data, excess molar volume, V^E , deviations in molar refraction, ΔR , deviations in viscosity, $\Delta \ln \eta$, and deviations in speed of sound, Δu , have been calculated, and these results are fitted to the Ridlich–Kister (1948) equation to estimate the binary coefficients and standard errors. Furthermore, these results are used to study the type and nature of intermolecular interactions between mixing components.

Experimental Section

Materials. High-purity spectroscopic and HPLC grade samples of ethenylbenzene, hexane, heptane, octane, nonane, decane, and dodecane were purchased from s.d. fine Chemicals Ltd., Mumbai, India. The GLC analyses were done on a gas chromatograph, Nucon series 5700/5765 using a flame ionization detector with fused silica columns, having a sensitivity better than 10^{-8} g of fatty acid/µL of solvent. The mol % GLC purity data of 99.6, 99.4, 99.5, 99.6, 99.7, 99.4, and 99.5 were shown respectively for ethenylbenzene, hexane, heptane, octane, nonane, decane, and dodecane. All the samples were therefore used without further purification. Experimental values of ρ and n_D of

Table 1. Comparison of Experimental Densities (ρ) and Refractive Indices (n_D) of Pure Liquids with Literature Values at 298.15 K

liquid	$10^{-3} ho$	/(kg•m ⁻³)		n _D		
(mol % purity)	expt	lit.	expt	lit.	ref	
ethenylbenzene >99.7%	0.9016	0.901 51 ^a	1.5440	1.544 00 ^b	Haijun et al., 1995a Riddick et al., 1986	
hexane (>99.6) heptane (>99.8) octane (>99.6) nonane (>99.4) decane (>99.8) dodecane (>99.6)	0.6547 0.6794 0.6986 0.7141 0.7264 0.7453	$\begin{array}{c} 0.654 \ 89 \\ 0.679 \ 50 \\ 0.698 \ 54 \\ 0.713 \ 75 \\ 0.726 \ 35 \\ 0.745 \ 20 \end{array}$	1.3729 1.3862 1.3959 1.4041 1.4099 1.4278	1.372 26 1.385 13 1.395 12 1.403 11 1.409 67 1.427 80	Marsh, 1995 Marsh, 1995 Marsh, 1995 Marsh, 1995 Marsh, 1995 Riddick et al 1986	

^a Haijun et al., 1995a. ^b Riddick et al., 1986.

the pure liquids are compared in Table 1 at 298.15 K with the literature findings.

Measurements. Densities of liquids and their mixtures were measured using a pycnometer having a bulb volume of 15 cm³ and a capillary bore with an internal diameter of 1 mm. Density values are accurate to ± 0.0002 g·cm⁻³.

Viscosities were measured using a Canon Fenske viscometer (size 75, Industrial Research Glassware, Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for flow time measurements. The measured viscosity values are accurate to ± 0.01 mPa·s

Refractive indices for the sodium-D line were measured using a thermostatically controlled Abbe refractometer (Bellingham and Stanley Ltd., London). A minimum of three independent readings were taken for each composition. The values of refractive indices are accurate to ± 0.0002 units.

The calibration procedures for the pycnometer, viscometer, and refractometer are the same as given earlier (Aminabhavi et al., 1993). The speeds of sound values were measured using a variable path single crystal interferometer (Mittal Enterprises, Model M-84, New Delhi) as described earlier byAralaguppi et al. (1991). The interferometer was used at a frequency of 1 kHz and was calibrated using water and benzene. The speed of sound values are accurate to ± 2 ms⁻¹.

In all the property measurements, an INSREF model 016 AP thermostat was used at a constant digital temperature display accurate to ± 0.01 K. The results of ρ , η , n_D , and u compiled in Table 2 represent the average values of three

^{*} Author for correspondence. E-mail: unikard@ren.nic.in.

Table 2. Experimental De	nsities (ρ), Refractive Indic	es (n_D), Viscosity (η), and	Speed of Sound (<i>u</i>) of the Binary
Mixtures at Different Tem	peratures		-

X1	$\frac{10^{3}\rho}{(\text{kg}\cdot\text{m}^{-3})}$	n _D	η/(mPa·s)	<i>u</i> /(m·s ⁻¹)	X 1	10 ³ ρ/(kg⋅m ⁻³)	n _D	η/(mPa·s)	<i>u</i> /(m·s ⁻¹)
	· ··· ··· · · · · · · · · · · · · · ·		Et	henylbenzen	$\overline{e(1) + \text{Hexan}}$	e (2)	 U	, 4 0,	
				298	3.15 K				
0.0000	0.6547	1.3729	0.298	1080	0.6023	0.7973	1.4737	0.457	1242
0.1019	0.6774	1.3888	0.314	1102	0.7055	0.8234	1.4919	0.507	1280
0.1987	0.6994	1.4045	0.334	1126	0.8021	0.8486	1.5086	0.566	1314
0.4003	0.7472	1.4385	0.385	1178	1.0000	0.9016	1.5440	0.709	1348
0.4992	0.7716	1.4560	0.417	1208					
				303	3.15 K				
0.0000	0.6501	1.3699	0.285		0.6023	0.7928	1.4715	0.436	
0.1019	0.6728	1.3862	0.302		0.7055	0.8190	1.4898	0.482	
0.1987	0.0948	1.4020	0.319		0.8021	0.8442	1.5069	0.534	
0.4003	0.7426	1.4359	0.340		1.0000	0.8971	1.5415	0.662	
0.4992	0.7670	1.4536	0.397						
				308	3.15 K				
0.0000	0.6454	1.3672	0.273		0.6023	0.7882	1.4693	0.412	
0.1019	0.6682	1.3837	0.290		0.7055	0.8145	1.4876	0.455	
0.1987	0.6902	1.3995	0.305		0.8021	0.8397	1.5052	0.505	
0.4003	0.7380	1.4333	0.351		1.0000	0.8926	1.5385	0.623	
0.4992	0.7624	1.4513	0.379		110000	010020	1.0000	01040	
			Etl	henylbenzene	e(1) + Heptan	ne (2)			
				205	R 15 K				
0.0000	0.6794	1.3862	0.388	1133	0.5997	0.7996	1.4713	0.500	1252
0.1018	0.6974	1.3989	0.398	1146	0.6992	0.8232	1.4881	0.536	1280
0.2020	0.7160	1.4121	0.412	1164	0.8006	0.8485	1.5060	0.581	1314
0.2988	0.7349	1.4253	0.427	1180	0.8979	0.8737	1.5241	0.638	1350
0.3984	0.7769	1.4551	0.448	1225	1.0000	0.9010	1.5440	0.709	1390
011000	011100	111001	01111	203	2 15 V				
0.0000	0.6751	1.3829	0.368	500	0.5997	0.7952	1.4684	0.473	
0.1018	0.6931	1.3963	0.379		0.6992	0.8187	1.4851	0.508	
0.2020	0.7116	1.4093	0.393		0.8006	0.8440	1.5030	0.550	
0.2988	0.7305	1.4225	0.406		0.8979	0.8694	1.5212	0.599	
0.3984	0.7509	1.4309	0.425		1.0000	0.8971	1.5415	0.002	
0.1000	0.17.81	1.1020	0.110	200	0 15 V				
0.0000	0.6707	1.3812	0.349	300	0.5997	0.7907	1.4655	0.450	
0.1018	0.6887	1.3939	0.360		0.6992	0.8143	1.4821	0.481	
0.2020	0.7072	1.4066	0.372		0.8006	0.8396	1.5000	0.519	
0.2988	0.7261	1.4198	0.386		0.8979	0.8650	1.5184	0.565	
0.3984	0.7465	1.4341	0.405		1.0000	0.8926	1.5385	0.623	
0.4000	0.7000	1.4455	0.425	honvilhonzon	$a(1) \perp Oston$	o (9)			
			E	nenyibenzen	e(1) + Octano	e (2)			
0.0000	0 6096	1 2050	0 500	1190	3.15 K	0 9091	1 4700	0 559	1970
0.1009	0.7132	1.4065	0.509	1192	0.3989	0.8245	1.4709	0.558	1304
0.1995	0.7286	1.4174	0.514	1204	0.8009	0.8484	1.5047	0.616	1334
0.3310	0.7505	1.4333	0.516	1222	0.8988	0.8736	1.5231	0.657	1360
0.3985	0.7626	1.4421	0.522	1234	1.0000	0.9016	1.5440	0.709	1390
0.4971	0.7813	1.4550	0.555	1254					
0.0000	0.6045	1 2025	0 478	303	3.15 K	0 7077	1 4692	0.524	
0.0000	0.0945	1.3935	0.478		0.5989	0.7977	1.4065	0.524	
0.1995	0.7244	1.4151	0.485		0.8009	0.8440	1.5019	0.575	
0.3310	0.7463	1.4309	0.488		0.8988	0.8690	1.5203	0.617	
0.3985	0.7583	1.4397	0.495		1.0000	0.8971	1.5415	0.662	
0.4971	0.7770	1.4531	0.500						
0.0000	0.0000	1 0017	0.450	308	3.15 K	0.0150	1 4057	0.405	
0.0000	0.6906	1.3917	0.453		0.5989	0.8156	1.4657	0.495	
0.1995	0.7420	1.4019	0.462		0.8009	0.8645	1.4991	0.550	
0.3310	0.7540	1.4285	0.464		0.8988	0.8926	1.5174	0.581	
0.3985	0.7726	1.4372	0.467		1.0000	0.8926	1.5385	0.623	
0.4971	0.7933	1.4507	0.476						
			Et	henylbenzen	e (1) + Nonan	e (2)			
				298	3.15 K				
0.0000	0.7141	1.4041	0.659	1198	0.5967	0.8045	1.4704	0.616	1286
0.0999	0.7262	1.4125	0.638	1212	0.6984	0.8254	1.4856	0.628	1308
0.2002	0.7395	1.4224	0.020	1224	0.7933	0.8729	1.5012	0.042	1332
0.3964	0.7687	1.4440	0.613	1248	1.0000	0.9016	1.5440	0.709	1390
0.4953	0.7855	1.4563	0.614	1266		-	-	-	-

x ₁	$10^{3} ho/(kg\cdot m^{-3})$	n _D	η/(mPa·s)	<i>u</i> /(m·s ⁻¹)	x ₁	$10^{3} ho/(kg\cdot m^{-3})$	n _D	η/(mPa·s)	<i>u</i> /(m⋅s ⁻¹)	
	303.15 K									
0.0000	0.7101	1.4021	0.620		0.5967	0.8002	1.4677	0.581		
0.0999	0.7222	1.4110	0.606		0.6984	0.8210	1.4830	0.593		
0.2002	0.7354	1.4200	0.588		0.7933	0.8425	1.4985	0.606		
0.2986	0.7494	1.4300	0.582		0.8971	0.8684	1.5177	0.628		
0.3964	0.7645	1.4416	0.577		1.0000	0.8971	1.5414	0.662		
0.4953	0.7814	1.4540	0.579							
				308	15 K					
0 0000	0 7062	1 3996	0.580	000	0 5967	0 7959	1 4651	0 547		
0.0000	0.7182	1 4079	0.564		0.6984	0.8167	1 4804	0.558		
0.0000	0.7313	1 4175	0.551		0.0001	0.8380	1 4959	0.570		
0.2002	0 7452	1 4279	0.501		0.8971	0.8640	1 5150	0.591		
0.3964	0.7604	1 4390	0.544		1 0000	0.8926	1 5385	0.623		
0.4953	0.7771	1.4512	0.544		1.0000	0.0020	1.0000	0.020		
			Et	henylbenzene	(1) + Decar	ne (2)				
				298	.15 K					
0.0000	0.7264	1.4099	0.844	1234	0.6135	0.8095	1.4727	0.688	1298	
0.1007	0.7368	1.4182	0.803	1244	0.6992	0.8264	1.4856	0.680	1314	
0.2052	0.7486	1.4275	0.773	1250	0.8062	0.8498	1.5032	0.677	1338	
0.2991	0.7604	1.4358	0.750	1258	0.8984	0.8728	1.5213	0.693	1360	
0.4114	0.7761	1.4484	0.724	1270	1.0000	0.9016	1.5440	0.709	1390	
0.4959	0.7891	1.4576	0.706	1280						
				303	15 K					
0.0000	0.7225	1.4080	0.786		0.6135	0.8052	1.4701	0.646		
0.1007	0.7327	1.4156	0.749		0.6992	0.8219	1.4827	0.638		
0.2052	0.7445	1.4248	0.722		0.8062	0.8453	1.5004	0.633		
0.2991	0.7563	1.4333	0.702		0.8984	0.8683	1.5185	0.644		
0.4114	0.7719	1.4458	0.678		1.0000	0.8971	1.5414	0.662		
0.4959	0.7849	1.4550	0.663							
				308	15 K					
0.0000	0.7186	1.4053	0.733	000	0.6135	0.8010	1.4675	0.607		
0.1007	0.7287	1.4134	0.700		0.6992	0.8175	1.4797	0.602		
0.2052	0.7405	1.4220	0.678		0.8062	0.8409	1.4976	0.600		
0.2991	0.7522	1.4309	0.658		0.8984	0.8638	1.5157	0.611		
0.4114	0.7678	1.4432	0.638		1.0000	0.8926	1.5385	0.623		
0.4959	0.7807	1.4524	0.624		110000	010020	110000	01020		
			Eth	enylbenzene	(1) + Dodeca	ane (2)				
				298	.15 K					
0.0000	0.7453	1.4271	1.330	1288	0.5987	0.8103	1.4740	0.866	1310	
0.0973	0.7527	1.4327	1.243	1288	0.6990	0.8277	1.4869	0.822	1326	
0.2027	0.7620	1.4405	1.143	1282	0.8005	0.8482	1.5022	0.774	1344	
0.2991	0.7716	1.4464	1.062	1282	0.8996	0.8720	1.5221	0.739	1364	
0.4009	0.7830	1.4541	0.990	1286	1.0000	0.9016	1.5440	0.709	1390	
0.5183	0.7983	1.4654	0.909	1296						
				303	15 K					
0.0000	0.7415	1.4259	1.218		0.5987	0.8062	1.4717	0.810		
0.0973	0.7488	1.4304	1.151		0.6990	0.8235	1.4845	0.769		
0.2027	0.7581	1.4381	1.051		0.8005	0.8444	1.4989	0.722		
0.2991	0.7676	1.4443	0.985		0.8996	0.8676	1.5192	0.688		
0.4009	0.7790	1.4524	0.920		1.0000	0.8971	1.5415	0.662		
0.5183	0.7942	1.4631	0.847							
				308	15 K					
0.0000	0.7378	1.4238	1.122	000	0.5987	0.8021	1.4694	0.760		
0.0973	0.7451	1.4282	1.059		0.6990	0.8193	1.4820	0.724		
0.2027	0.7543	1.4358	0.980		0.8005	0.8397	1.4956	0.691		
0.2991	0.7637	1.4426	0.915		0.8996	0.8632	1.5162	0.656		
0.4009	0.7751	1.4500	0.854		1.0000	0.8926	1.5385	0.623		
0.5183	0.7901	1.4607	0.791							

independent measurements for each composition of the mixture.

Results and Discussion

Table 2 (Continued)

Excess molar volume, $V^{\rm E}$, and deviations in Lorentz– Lorenz molar refractivity, ΔR , viscosity, $\Delta \ln \eta$, and speed of sound, Δu , of the mixtures have been calculated from the results of ρ , $n_{\rm D}$, η , and u given in Table 2, using the following general equation (Aminabhavi et al., 1994; Aminabhavi and Bindu, 1995):

$$Y^{E}$$
 (or ΔY) = $Y_{m} - x_{1}Y_{1} - x_{2}Y_{2}$ (1)

where $Y^{E} = V^{E}$ and $\Delta Y = \Delta R$, Δu , and $\Delta \ln \eta$ of the

mixtures, x_i is the mole fraction of the *i*th component in the mixture, Y_m is the respective mixture property viz., Lorentz-Lorenz molar refractivity, *R*, speed of sound, *u*, and viscosity, η , of the mixtures), and Y_i is the respective property of the pure component, *i*, in the mixture. To calculate ΔR and Δu , the volume fraction, φ_i is used instead of the mole fraction (Aminabhavi et al., 1994; Aminabhavi and Bindu, 1995).

Excess molar volumes of the mixtures of ethenylbenzene + alkanes (C₆ to C₁₂) at 298.15 K are presented as a function of mole fraction, x_1 , of ethenylbenzene in Figure 1. For the ethenylbenzene (1) + hexane (2) mixture, the V^E values are negative and smaller than all the other mixtures. With ethenylbenzene (1) + heptane (2) mixtures,

Table 3.	Estimated	Parameters	of Excess	Functions	for
Mixtures	5				

function	temp/K	A_0	A_1	A_2	σ
Ethe	nvlbenze	ene (1) + He	exane (2)		
$10^{-6} V^{E}/(m^3 \cdot mol^{-1})$	298.15	-1.024	0.268	0.545	0.015
,	303.15	-1.126	0.317	0.345	0.013
	308.15	-1.236	0.341	0.212	0.012
$10^{-6} \Lambda R/(m^3 \cdot mol^{-1})$	298 15	2 025	0.099	-0.379	0.012
	303 15	2 161	0.000	-0.142	0.017
	308 15	2 298	0.125	0.142	0.017
$\Delta \ln n/(mPars)$	208 15	-0.386	-0.008	0.125	0.021
$\Delta \ln \eta (\ln a \cdot s)$	202 15	-0.255	-0.000	0.033	0.007
	202.15	-0.333	-0.023	0.107	0.000
$\Delta u/(m \cdot c^{-1})$	208 15	-0.346	-0.008	15 /	1 099
$\Delta u/(11-S^{-1})$	296.15	-104.5	21.2	15.4	1.000
Ether	iylbenze	ne $(1) + \text{He}$	ptane (2)		
$10^{-6} V^{E}/(m^{3} \cdot mol^{-1})$	298.15	-0.069	0.462	-0.128	0.004
	303.15	-0.115	0.508	-0.263	0.008
	308.15	-0.161	0.528	-0.305	0.011
$10-6\Delta R/(m3 \cdot mol-1)$	298.15	0.955	-0.105	0.012	0.007
	303.15	0.982	-0.381	0.151	0.015
	308.15	0.835	-0.164	-0.107	0.010
$\Delta \ln \eta / (mPa \cdot s)$	298.15	-0.425	0.084	-0.009	0.002
,	303.15	-0.404	0.068	0.050	0.002
	308.15	-0.381	0.078	0.010	0.002
$\Lambda u/(m \cdot s^{-1})$	298.15	-146.4	22.7	2.3	0.909
Eth.		(1) 0	(D)	210	0.000
Etne 10-61年/(31-1)	nyibenze	ene(1) + Oc	cane(z)	0.070	0.000
$10^{-6}V^{2}/(m^{3} mol^{-1})$	298.15	0.546	0.235	-0.273	0.006
	303.15	0.568	0.225	-0.299	0.005
	308.15	0.680	0.270	-0.132	0.008
$10^{-6}\Delta R/(m^{3} \cdot mol^{-1})$	298.15	-0.586	0.097	-0.085	0.003
	303.15	-0.598	0.010	-0.161	0.005
	308.15	-0.620	0.082	-0.321	0.003
$\Delta \ln \eta / (\text{mPa} \cdot \text{s})$	298.15	-0.449	0.062	0.123	0.005
	303.15	-0.431	0.078	0.136	0.007
	308.15	-0.427	0.097	0.254	0.004
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-114.6	60.4	21.1	1.136
Etho	nylhonzo	$no(1) \perp No$	nana (9)		
$10^{-6} VE/(m^3, mol^{-1})$	200 15	n = (1) + 100	0.916	-0.266	0.005
10 1/ (111-11101)	202.15	0.014	0.210	0.200	0.000
	303.15	0.010	0.207	-0.213	0.000
10-6 + D/(-3) = 1-1	308.13	0.913	0.279	-0.076	0.003
$10 \ ^{\circ}\Delta R/(\mathrm{m}^{3} \cdot \mathrm{mol}^{-1})$	298.15	-3.092	0.294	-0.972	0.010
	303.15	-3.185	0.330	-0.995	0.019
	308.15	-3.121	0.342	-0.962	0.009
$\Delta \ln \eta / (mPa \cdot s)$	298.15	-0.424	0.107	-0.076	0.006
	303.15	-0.413	0.057	-0.011	0.003
	308.15	-0.396	0.052	-0.079	0.002
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-109.3	31.6	30.2	1.454
Ethe	nvlbenze	ene(1) + De	cane (2)		
$10^{-6} V^{E}/(m^{3} \cdot mol^{-1})$	298.15	1.245	0.294	-0.036	0.007
10 , (303 15	1 314	0.323	0 1 4 8	0.008
	308 15	1 377	0.020	0.140	0.000
$10^{-6} \Lambda R/(m^3, mol^{-1})$	208 15	-5 996	1 117	0.022	0.010
	202 15	-6 109	1.117	-0.440	0.025
	200.15	-6.062	1.67	-0.171	0.020
	308.13	-0.003	1.107	-0.171	0.023
$\Delta \ln \eta / (mPa \cdot s)$	298.15	-0.369	0.136	-0.088	0.004
	303.15	-0.339	0.144	-0.135	0.003
	308.15	-0.329	0.130	-0.070	0.004
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-126.3	30.2	20.2	1.157
Ether	ylbenzei	ne $(1) + Doc$	lecane(2)		
$10^{-6} V^{E/(m^3 \cdot mol^{-1})}$	298.15	1.712	0.024	0.348	0.013
	303.15	1.760	0.215	0.243	0.034
	308 15	1.835	0.065	0.420	0.018
$10^{-6} \Lambda R/(m^3, mol^{-1})$	208 15	-1/ 000	5 001	-0.221	0.010
	202 15	-15 199	1 00F	-1 197	0.040
	303.13	-15 116	4.993	-1 459	0.000
$\int \ln w / (m D c_{1} c_{2})$	200.13	10.110	4.903	1.400	0.070
$\Delta \prod \eta/(\prod a s)$	290.10	-0.204	0.009	0.007	0.003
	303.15	-0.1/1	0.072	0.054	0.006
A // . 15	308.15	-0.427	0.097	0.254	0.004
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-148.7	113.6	-55.95	2.403

the $V^{\mathbb{E}}$ results show a sigmoidal *S*-shaped composition dependence, showing a small positive part in the region rich in heptane ($x_1 < 0.4$). Such a behavior was also observed earlier by Lainez et al. (1992) for mixtures of pyridine and heptane at 298.15 K. The reasons for such an *S*-shaped behavior were given earlier by Costas and Patterson (1982), and this was attributed to the equation of state effects. All the other systems show positive $V^{\mathbb{E}}$ only. With increasing length of alkanes in the binary

Figure 1. Dependence of excess molar volume on mole fraction of ethenylbenzene with (\bigcirc) hexane, (\triangle) heptane, (\Box) octane, (\bullet) nonane, (\blacktriangle) decane, and (\blacksquare) dodecane at 298.15 K.

Figure 2. Dependence of deviation in molar refractivity on volume fraction of ethenylbenzene at 298.15K. Symbols are the same as given in Figure 1.

Figure 3. Dependence of deviation in $\ln \eta$ on mole fraction of ethenylbenzene at 298.15K. Symbols are the same as given in Figure 1.

mixtures, the $V^{\rm E}$ increases systematically from ~0.15 cm³·mol⁻¹ for ethenylbenzene + octane to about 0.42 cm³·mol⁻¹ for ethenylbenzene + dodecane.

Figure 4. Dependence of deviation in speed of sound on volume fraction of ethenylbenzene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 5. Dependence of excess molar volume on mole fraction for mixtures of ethenylbenzene (1) + hexane (2) at (\bigcirc) 298.15 K, (\triangle) 303.15 K, and (\Box) 308.15 K.

Figure 6. Dependence of deviation in molar refractivity on volume fraction for the same mixtures and temperatures as given in Figure 5.

The deviations in molar refraction, ΔR , of the mixtures at 298.15 K as calculated from the Lorentz–Lorenz equation are displayed graphically in Figure 2. For mixtures

Figure 7. Dependence of deviation in $\ln \eta$ on mole fraction for mixtures of ethenylbenzene (1) + decane (2) at the temperatures given in Figure 5.

of ethenylbenzene + hexane, or + heptane, the ΔR values are positive, while for the remaining mixtures, the ΔR values are negative, thereby showing a decrease in ΔR with increasing size of alkanes.

The dependence of $\Delta \ln \eta$ on mole fraction x_1 at 298.15 K is displayed in Figure 3. For all the mixtures, $\Delta \ln \eta$ values are negative and do not show any systematic dependence on the size of alkanes. The results of Δu versus φ_1 are presented in Figure 4 and these values are also negative and show no systematic dependence on the size of alkanes in the mixtures.

While the calculated values of $V^{\rm E}$, ΔR , and $\Delta \ln \eta$ show a dependence on temperature, these plots for all the liquids are not presented in order to avoid any overcrowding of the number of graphical presentations. The dependence of $V^{\rm E}$ and ΔR on temperature for mixtures of ethenylbenzene with hexane are shown in Figures 5 and 6, while the dependence of $\Delta \ln \eta$ on temperature is shown in Figure 7 for the ethenylbenzene + decane mixture. The effect of temperature on these quantities is very systematic. However, such values are not very systematic for other higher alkane-containing mixtures. It may be noted that in view of the poor solubility of tetradecane and other higher alkanes with ethenylbenzene, the properties for these mixtures are not measured.

The results of Y^{E} and ΔY calculated from eq 1 have been fitted to the Redlich–Kister equation (1948) to estimate the coefficients, A_{i} , by the method of least squares.

$$Y^{\rm E}$$
 (or ΔY) = $x_1 x_2 \sum_{i=1}^{2} A_i (x_2 - x_1)^{i-1}$ (2)

The coefficients, $A_{\rm b}$ along with the standard errors, σ , were calculated from

$$\sigma = \left[\sum_{i=1}^{n} (Y_{\text{obs}} - Y_{\text{cal}})^2 / (m-p)\right]^{1/2}$$
(3)

where Y_{obs} and Y_{cal} are the observed and calculated quantities as defined earlier, *m* is the number of data points, and *p* is the number of estimated parameters. The estimated values of A_i and σ for all the mixtures are presented in Table 3. The smoothed curves in Figures 1–7 are drawn from the fitted values, but the points in all these graphs represent the experimentally calculated values.

Acknowledgment

V.B.P. is thankful to the Management of J. S. S. College and UGC New Delhi (FIP) for a leave of absence to complete his Ph.D. degree.

Literature Cited

- Aminabhavi, T. M.; Bindu, G. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N'-Dimethyl Sulfoxide, N,N'-Dimethylacetamide, Acetonitrile, Ethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15
 K. J. Chem. Eng. Data 1995, 40, 856–861.
- Aminabhavi T. M.; Phayde, H. T. S; Aralaguppi, M. I.; Khinnavar, R. S. Densities, Viscosities and Speeds of Sound for Diethylene Glycol Dimethyl Ether + Methyl Acetate. J. Chem. Eng. Data 1993, 38, 540–541.
- Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Bindu, G.; Hansen, K. C. Densities, Refractive Indices, Speeds of Sound, and Shear Viscosities of Diethylene Glycol Dimethyl Ether with Ethyl Acetate, Methyl Benzoate, Ethyl Benzoate, and Diethyl Succinate in the Temperature Range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.
- Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Binary Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- Costas, M.; Patterson, D. Volumes of Mixing and the P* Effect: Part II. Mixtures of Alkanes with Liquids of Different Internal Pressures. J. Solution Chem. 1982, 11, 807–821.
- Haijun, W.; Guokang, Z.; Mingzhi, C. Excess Volumes of (Acrylonitrile + an Aromatic Hydrocarbon) at the Temperature 298.15 K. *J. Chem. Thermodyn.* **1994a**, *26*, 457–460.
- Haijun, W.; Mingzi, C.; Guokang, Z. Excess Volumes of (an Aliphatic Dinitrile + an Aromatic Hydrocarbon) at the Temperature 298.15
 K. J. Chem. Thermodyn. 1994b, 26, 913–918.

- Haijun, W.; Mingzi, C.; Guokang, Z. Excess Volumes of (Benzonitrile + an Aromatic Hydrocarbon) at the Temperature 298.15 K. J. Chem. Thermodyn. **1995a**, *27*, 57–61.
- Haijun, W.; Zhongxing, S.; Xiaoxian, Z. Excess Volumes of (a Polar Liquid + an Aromatic Hydrocarbon) at the Temperature 298.15 K III. (N,N-Dimethylacetamide + an Aromatic Hydrocarbon). J. Chem. Thermodyn. 1995b, 27, 1349–1353.
- Haijun, W.; Chao, Z.; Mingzhi, C.; Hulin, L. Excess Volumes of (a Polar Liquid + an Aromatic Hydrocarbon) at the Temperature 298.15 K I, (N,N-Dimethylformamide + an Aromatic Hydrocarbon). *J. Chem. Thermodyn.* 1995c, *27*, 991–996.
- Lainez, A.; Rodrigo, M. M.; Wilhelm, E.; Grolier, J. P. E. Thermodynamics of Liquid Mixtures Containing n-Alkanes and Strongly Polar Components: V^E and C_P^E of Mixtures with Either Pyridine or Piperdine, *J. Solution Chem.* **1992**, *21*, 49–65.
- Marsh, K. N. TRC Data Bases for Chemistry and Engineering-TRC Thermodynamic Tables; Texas A&M University: College Station, TX, 1995.
- Miller, L. P.; Wachter, H. N.; Fried, V. Densities and Molar Volumes of Binary Solutions of Nitrobenzene in Electron Donating Solvents. *J. Chem. Eng. Data* **1975**, *20*, 417–419.
- Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* 1948, 40, 345–348.
- Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Techniques of Chemistry, Organic Solvents. *Physical Properties and Methods of Purification*; John Wiley & Sons: New York, 1986; Vol. II.

Received for review November 19, 1996. Accepted March 5, 1997.[⊗] JE960382H

[®] Abstract published in Advance ACS Abstracts, April 15, 1997.